18,661 research outputs found

    Responses to ethanol in C57BL/6 versus C57BL/6 × 129 hybrid mice

    Get PDF
    Although genetic background alters responses to ethanol, there has not yet been a methodical quantification of differences in ethanol-related behaviors between inbred and hybrid mice commonly used in gene-targeting studies. Here, we compared C57BL/6NTac × 129S6/SvEvTac F1 hybrid mice (B6129S6) with C57BL/6NTac inbred mice (B6NT), and C57BL/6J × 129X1/SvJ (B6129X1) and C57BL/6J × 129S4/SvJae F1 hybrids (B6129S4) with C57BL/6J mice (B6J), in five commonly used tests: continuous access two-bottle choice drinking, intermittent limited-access binge drinking, ethanol clearance, ethanol-induced loss of the righting reflex, and conditioned place preference (CPP) for ethanol. We found that inbred B6J and B6NT mice showed greater ethanol preference and consumption than their respective hybrids when ethanol was continuously available. Within the intermittent limited-access drinking procedure, though all lines showed similar intake over eight drinking sessions, the average of all sessions showed that B6NT mice drank significantly more ethanol than B6129S6 mice. In addition, B6J mice consumed more ethanol than B6129X1 mice, although they drank less than B6129S4 mice. No differences in ethanol LORR duration were observed between inbred and hybrid mice. Although ethanol clearance was similar among B6J mice and their respective hybrids, B6NT mice cleared ethanol more rapidly than B6129S6 mice. All lines developed CPP for ethanol. Our findings indicate that it may not be necessary to backcross hybrids to an inbred B6 background to study many ethanol-related behaviors in gene-targeted mice

    Highly Variable Genomic Landscape of Endogenous Retroviruses in the C57BL/6J Inbred Strain, Depending on Individual Mouse, Gender, Organ Type, and Organ Location.

    Get PDF
    Transposable repetitive elements, named the "TREome," represent ~40% of the mouse genome. We postulate that the germ line genome undergoes temporal and spatial diversification into somatic genomes in conjunction with the TREome activity. C57BL/6J inbred mice were subjected to genomic landscape analyses using a TREome probe from murine leukemia virus-type endogenous retroviruses (MLV-ERVs). None shared the same MLV-ERV landscape within each comparison group: (1) sperm and 18 tissues from one mouse, (2) six brain compartments from two females, (3) spleen and thymus samples from four age groups, (4) three spatial tissue sets from two females, and (5) kidney and liver samples from three females and three males. Interestingly, males had more genomic MLV-ERV copies than females; moreover, only in the males, the kidneys had higher MLV-ERV copies than the livers. Perhaps, the mouse-, gender-, and tissue/cell-dependent MLV-ERV landscapes are linked to the individual-specific and dynamic phenotypes of the C57BL/6J inbred population

    Corticotropin-releasing factor receptors couple to multiple g-proteins to activate diverse intracellular signaling pathways in mouse hippocampus: role in neuronal excitability and associative learning

    Get PDF
    Corticotropin-releasing factor (CRF) exerts a key neuroregulatory control on stress responses in various regions of the mammalian brain, including the hippocampus. Using hippocampal slices, extracts, and whole animals, we investigated the effects of human/rat CRF (h/rCRF) on hippocampal neuronal excitability and hippocampus-dependent learning in two mouse inbred strains, BALB/c and C57BL/6N. Intracellular recordings from slices revealed that application of h/rCRF increased the neuronal activity in both mouse inbred strains. Inhibition of protein kinase C (PKC) by bisindolylmaleimide I (BIS-I) prevented the h/rCRF effect only in hippocampal slices from BALB/c mice but not in slices from C57BL/6N mice. Inhibition of cAMP-dependent protein kinase (PKA) by H-89 abolished the h/rCRF effect in slices from C57BL/6N mice, with no effect in slices from BALB/c mice. Accordingly, h/rCRF elevated PKA activity in hippocampal slices from C57BL/6N mice but increased only PKC activity in the hippocampus of BALB/c mice. These differences in h/rCRF signal transduction were also observed in hippocampal membrane suspensions from both mouse strains. In BALB/c mice, hippocampal CRF receptors coupled to Gq/11 during stimulation by h/rCRF, whereas they coupled to Gs, Gq/11, and Gi in C57BL/6N mice. As expected on the basis of the slice experiments, h/rCRF improved context-dependent fear conditioning of BALB/c mice in behavioral experiments, and BIS-I prevented this effect. However, although h/rCRF increased neuronal spiking in slices from C57BL/6N mice, it did not enhance conditioned fear. These results indicate that the CRF system activates different intracellular signaling pathways in mouse hippocampus and may have distinct effects on associative learning depending on the mouse strain investigated

    Agouti C57BL/6N embryonic stem cells for mouse genetic resources.

    Get PDF
    We report the characterization of a highly germline competent C57BL/6N mouse embryonic stem cell line, JM8. To simplify breeding schemes, the dominant agouti coat color gene was restored in JM8 cells by targeted repair of the C57BL/6 nonagouti mutation. These cells provide a robust foundation for large-scale mouse knockout programs that aim to provide a public resource of targeted mutations in the C57BL/6 genetic background

    Placentophagia in Nonpregnant Nulliparous Mice: A Genetic Investigation

    Get PDF
    The genetic influence on the response of nonpregnant nulliparous mice to foster placenta was investigated. Two highly inbred strains (BALB/cBy and C57BL/6By), their F1 hybrids, a backcross generation, and seven recombinant-inbred strains derived from the F2 generation were tested. It was concluded that there is a genetic component to the response of female mice to placenta in the absence of previous experience, and that more than one, but possibly as few as two loci are involved. Alternative explanations of average dominance for placentophagia and for no placentophagia (by the promotion of competing responses) were considered

    Experimentation with Animals: A Key Aspect of the 3Rs. The Genetic Quality

    Get PDF
    The genetic quality of laboratory animals is essential for reproducibility of scientific research. Working with animals of certifiedgenetic quality is still a pending issue in Argentina due to the lack of routine genetic controls, of information on the genetic background of animals and of proper training. Apart from being concerned with having their results published and getting funding for research, scientists should know the genetic origin of laboratory animals. Consequently, they should perform genetic controls to verifywhether animal integrity has been compromised by accidental genetic contamination or genetic drift. The aim of this work was toevaluate the genetic purity of the inbred C57BL/6J mouse strain from three animal facilities belonging to the Buenos Aires UniversitySchool of Medicine network by analyzing a panel of microsatellite markers. Female mice tail samples (3-5 mm) were taken and genomic DNA was obtained by organic extraction. The genetic profile of each animal was determined by PCR-fragment analysis, usingmicrosatellites D1Mit155, D2Mit493, D3Mit49, D13Mit13, D6Mit8 and D12Mit12, located on six different autosomal chromosomesand selected from the Mouse Genome Informatics database (www.informatics.jax.org/searches). The results obtained provided keydata on the genetic quality of the three inbred animal colonies studied. They also served as an example for other laboratory animalfacilities in Argentina and as a starting point to modify the conditions and management of laboratory animal colonies. We determinedthe genetic purity of the inbred C57BL/6J mouse strain in all animal facilities evaluated. All six loci analyzed were homozygous,certifying their isogenicity and phenotypic uniformity. These results are promising for animal facilities mainly performing biomedical research. They also show a positive evolution in handling animal colonies and use of the 3Rs, and researcher commitment withanimal science, since they promote the supply of genetically quality-controlled animals. The positive impact of these results shouldencourage other researchers using this inbred strain to perform periodic genetic monitoring, thereby consolidating the supply ofquality-controlled mice. This pioneering study carried out in IGEVET (CONICET- UNLP) should consolidate the genetic monitoring ofinbred strains throughout the country.Fil: Lizarraga, Maria Alfonsina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; ArgentinaFil: Posik, Diego Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; ArgentinaFil: Zappa, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; ArgentinaFil: Castillo, Nadia Sabiela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; ArgentinaFil: Giovambattista, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; Argentin

    Lifespan modulation in mice and the confounding effects of genetic background

    Get PDF
    We are currently in the midst of a revolution in ageing research, with several dietary, genetic and pharmacological interventions now known to modulate ageing in model organisms. Excitingly, these interventions also appear to have beneficial effects on late-life health. For example, dietary restriction (DR) has been shown to slow the incidence of age-associated cardiovascular disease, metabolic disease, cancer and brain ageing in non-human primates and has been shown to improve a range of health indices in humans. While the idea that DR's ability to extend lifespan is often thought of as being universal, studies in a range of organisms, including yeast, mice and monkeys, suggest that this may not actually be the case. The precise reasons underlying these differential effects of DR on lifespan are currently unclear, but genetic background may be an important factor in how an individual responds to DR. Similarly, recent findings also suggest that the responsiveness of mice to specific genetic or pharmacological interventions that modulate ageing may again be influenced by genetic background. Consequently, while there is a clear driver to develop interventions to improve late-life health and vitality, understanding precisely how these act in response to particular genotypes is critical if we are to translate these findings to humans. We will consider of the role of genetic background in the efficacy of various lifespan interventions and discuss potential routes of utilising genetic heterogeneity to further understand how particular interventions modulate lifespan and healthspan

    Strain-dependent differences in corticolimbic processing of aversive or rewarding stimuli

    Get PDF
    Aberrations in the elaboration of both aversive and rewarding stimuli characterize several psychopathologies including anxiety, depression and addiction. Several studies suggest that different neurotrasmitters, within the corticolimbic system, are critically involved in the processing of positive and negative stimuli. Individual differences in this system, depending on genotype, have been shown to act as a liability factor for different psychopathologies. Inbred mouse strains are commonly used in preclinical studies of normal and pathological behaviors. In particular, C57BL/6J (C57) and DBA/2J (DBA) strains have permitted to disclose the impact of different genetic backgrounds over the corticolimbic system functions. Here, we summarize the main findings collected over the years in our laboratory, showing how the genetic background plays a critical role in modulating amminergic and GABAergic neurotransmission in prefrontal-accumbal-amygdala system response to different rewarding and aversive experiences, as well as to stress response. Finally, we propose a top-down model for the response to rewarding and aversive stimuli in which amminergic transmission in prefrontal cortex (PFC) controls accumbal and amygdala neurotransmitter response

    Anatomic correlates of strial presbycusis in recombinant inbred mouse strains

    Get PDF
    This project attempts to identify anatomic features that predict the range of the ‘normal’ endocochlear potential in young inbred mice. Cochlear lateral wall histologic metrics were compared in recombinant inbred (RI) mouse strains formed from BALB/c and C57BL/6 mice
    corecore